خورشید (نامهای ادبی یا قدیمی: خور، هور، مهر، روز) یکی از ستارگان کهکشان راه شیری و تنها ستارهٔ سامانهٔ خورشیدی است که در مرکز آن جای دارد. میتوان گفت خورشید یک کُرهٔ کامل است که از پلاسمای داغ ساخته شدهاست و در میانهٔ آن میدان مغناطیسی برقرار است.۹۱۰ این ستاره که قطری نزدیک به ۱٬۳۹۲٬۰۰۰ کیلومتر دارد سرچشمهٔ اصلی نور، انرژی، گرما و زندگی بر روی زمین است. قطر خورشید نزدیک به ۱۰۹ برابر قطر زمین و جرم آن ۳۳۰ هزار برابر جرم زمین برابر با ۲×۱۰۳۰ کیلوگرم است به این ترتیب ۹۹٫۸۶٪ جرم کل سامانهٔ خورشیدی از آن خورشید است.۱۱
انفجار نهایی یک ستارهٔ سنگین را ابرنواختر مینامند ولی خورشید ما هیچگاه انفجاری اینچنین را تجربه نخواهد کرد چرا که کمترین جرم مورد نیاز برای رخداد یک ابرنواختر، هشت برابر جرم خورشید ما است.۱۲ از نظر شیمیایی سه-چهارم جرم خورشید را هیدروژن و باقیماندهٔ آن را بیشتر هلیم میسازد. پس از هیدروژن و هلیم، عنصرهای سنگین از سازندگان دیگر خورشید اند که عبارتند از: اکسیژن، کربن، نئون و آهن و... این عنصرها، سازندهٔ ۱٫۶۹٪ از جرم خورشید اند که خود این مقدار ۵٬۶۲۸ برابر جرم زمین است.۱۳
خورشید در ردهبندی ستارگان بر پایهٔ ردهبندی طیفی، در دستهٔ G27 جای دارد و به صورت غیررسمی با نام کوتولهٔ زرد از آن یاد میشود چون پرتوهای پیدای آن در طیف زرد-سبز شدیدتر است. هر چند که رنگ آن از سطح زمین، سفید باید دیده شود ولی چون پراکندگی نور آبی در جو وجود دارد، به رنگ زرد دیده میشود (پراکندگی رایلی).۱۴۱۵ همچنین در برچسب ردهبندی طیفی، G2، گفته شده که دمای سطح خورشید نزدیک به ۵۷۷۸ کلوین (۵۵۰۵ سانتیگراد) است و در V گفته شدهاست که خورشید مانند بیشتر ستارگان، یک ستارهٔ رشتهٔ اصلی است و درنتیجه انرژی خود را از راه همجوشی هستهای هسته ی هیدروژن به هلیم فراهم میکند و در هر ثانیه، در هستهٔ خود، ۶۲۰ میلیون تُن هیدروژن را دچار همجوشی میکند. در دورهای کیهان شناسان میگفتند که خورشید نسبت به دیگر ستارگان، ستارهای کوچک و ناچیز است ولی امروزه بر این باور اند که خورشید از ۸۵٪ ستارگان کهکشان راه شیری درخشان تر است. چون بیشتر آنها کوتولههای سرخ اند.۱۶۱۷ بزرگی قدر مطلق خورشید ۴٫۸۳+ است البته چون خورشید نزدیکترین ستاره به زمین است، برای آن، خورشید درخشانترین جرم در آسمان دانسته میشود و قدر ظاهری آن ۲۶٫۷۴- است.۱۸۱۹ تاج خورشیدی پیوسته در حال پراکندن بادهای خورشیدی در فضا است. این بادها، جریانهایی از ذرههای باردار اند که تا فاصلهای نزدیک به ۱۰۰ واحد نجومی توان دارند. حبابهای ساخته شده در محیط میانستارهای که در اثر بادهای خورشیدی ساخته شدهاند، بزرگترین سازهٔ پیوستهٔ پدید آمده در منظومهٔ خورشیدی اند.۲۰۲۱
هم اکنون خورشید در حال سفر از میان ابر میانستارهای محلی در ناحیهٔ حباب محلی در لبهٔ بازوی شکارچی از کهکشان راه شیری است. از میان ۵۰ ستارهای که تا شعاع ۱۷ سال نوری، در همسایگی زمین قرار دارند، (نزدیکترین آنها یک کوتولهٔ سرخ به نام پروکسیما قنطورس است که ۴٫۲ سال نوری فاصله دارد) از دیدگاه جرم، خورشید رتبهٔ چهارم را در میان آنها دارد.۲۲ اگر از قطب شمالی کهکشان نگاه کنیم، خورشید به صورت ساعتگرد به گرداگرد مرکز کهکشانی راه شیری در گردش است و از آن نقطه نزدیک به ۲۴٬۰۰۰ تا ۲۶٬۰۰۰ سال نوری فاصله دارد، امید آن میرود که این گردش را ۲۲۵ تا ۲۵۰ میلیون سال دیگر به پایان برساند و دور خود را کامل کند. از آنجایی که کهکشان ما نسبت به تابش زمینهٔ کیهانی (CMB) در راستای صورت فلکی مار باریک با سرعت ۵۵۰ کیلومتر بر ثانیه در حرکت است، درنتیجه سرعت بدست آمده برای خورشید نسبت به CMB در راستای صورتهای فلکی پیاله یا شیر، ۳۷۰ کیلومتر بر ثانیه میشود.۲۳
فاصلهٔ متوسط خورشید از زمین نزدیک به ۱۴۹٫۶ میلیون کیلومتر است (یک واحد نجومی) است البته این فاصله در هنگامههای گوناگون حرکت زمین به گرد خورشید (در نقطههای اوج و حضیض) در ماههای ژانویه تا ژوئیه فرق میکند.۲۴ در این فاصلهٔ میانگین، برای نور ۸ دقیقه و ۱۹ ثانیه زمان برده میشود تا از خورشید تا زمین سفر کند. میتوان گفت انرژی آمده از نور سفید خورشید، باعث ادامهٔ فرایند نورساخت، بوجود آمدن اقلیم و آب و هوای زمین و درنتیجه، فراهم کنندهٔ زندگی برای همهٔ جانداران روی زمین است.۲۵ نقش برجستهٔ خورشید بر وضعیت زمین از سالهای دور، از دوران پیشاتاریخ برای انسان شناخته شده بود به همین دلیل برای بسیاری از فرهنگها خورشید به عنوان یک خدا دانسته شده بود. همواره پیشرفت دانش از چیستی خورشید با کندی بسیار همراه بوده تا آنکه در سدهٔ ۱۹ میلادی آگاهی اندکی از مواد سازندهٔ خورشید و منبع انرژی آن بدست آمد. تلاش برای آگاهی بیشتر از خورشید همچنان ادامه دارد چون همچنان شماری از پدیدهها و رفتارهای بدون توضیح علمی در خورشید دیده میشود.
نام و ریشه
خورشید در فارسی درگذشته با نامهای دیگری چون خور، هور، مهر، روز خوانده میشد. خورشید در فارسی نوین از xvar-xšed از فارسی میانه که ایزدی است که در یشت ششم اوستا در مورد او نوشته آمده وی ایزدی است که جهان را از آلودگی دور میدارد. در اوستا hvarr-، xvan ،ta hvarә-xšaē آمده است. واژه خورشید درارای دو جزء است جزء نخست xvar-، hvar که با سنسکریت svar «خورشید» سنجنده میشود. جزء دوم برگرفته از اوستایی xšaita- «درخشان» است که در نام جمشید (پادشاه دوران طلایی در اسطورههای ایرانی و نیز نخستین شاه در برخی روایتها) آمده و برگرفته از صورت اوستایی yama-xšaita به معنی «جم درخشان» است.۲۶
در زبان انگلیسی واژهٔ Sun برای خورشید از واژهٔ sunne در انگلیسی باستان گرفته شدهاست (نزدیک به سال ۷۲۵ در بئوولف). گمان آن میرود که این واژه با واژهٔ south به معنی جنوب ارتباط داشته باشد. واژههای هم ریشه با Sun در زبانهای دیگر، مانند زبانهای ژرمنی و فریسی باستان به صورت sunne و sonne در ساکسونی باستان به صورت sunna، در هلندی میانه به صورت sonne، در هلندی امروزی به صورت zon در آلمانی Sonne، در نروژی باستان sunna و در زبان گوتیک sunnō است تمام عبارتهای آلمانی برای Sun از sunnōn در نیازبانهای ژرمنی آمدهاست.۲۷۲۸
در هنگامهٔ پیش از مسیحیت اقوام ژرمن به خورشید شخصیت داده میشد و به عنوان خدا پرستش میشد نام آن در آن هنگامه Sól یا Sunna (به معنی خورشید در نروژی باستان) بود.۲۸ پژوهشگران گمان میکنند که خورشید، ایزدبانوی ژرمنی ریشهای هندو-اروپایی در خورشیدخدایی کهن تر در زبانهای هندواروپایی دارد و میان واژهٔ Sól در نروژی باستان، سوریا در زبان سانسکریت، Sulis در زبان گالیش، Saulė در لیتوانیایی و Solnitse در زبانهای اسلاوی ارتباط است.۲۸
واژهٔ Sunday یا روز یکشنبه در انگلیسی امروزی، ریشه در انگلیسی باستان دارد (Sunnandæg به معنی «روز خورشید» پیش از سال ۷۰۰) و این به دلیل ترجمهٔ ژرمنی از عبارت لاتین dies solis است، خود این عبارت لاتین هم ترجمهٔ عبارت یونانی heméra helíou است.۲۹
در زبان لاتین واژهٔ Sol برای اشاره به ستاره بکار میرود این واژه به صورت اسم در انگلیسی کاربرد ندارد اما صفت آن solar بسیار پرکاربرد است.۳۰۳۱ واژهٔ Sol برای اشاره به زمان خورشیدی در دیگر سیارهها مانند بهرام کاربرد دارد.۳۲ یک روز خورشیدی در زمین، میانگین ۲۴ ساعت است در حالی که روی بهرام ۲۴ ساعت و ۳۹ دقیقه و ۳۵٫۲۴۴ ثانیهاست.۳۳
ویژگیها
نمای کلی از ساختار درونی خورشید:
۱. هسته
۲. ناحیهٔ تابشی
۳. ناحیهٔ همرفتی
۴. شیدسپهر
۵. فامسپهر
۶. تاج
۷. لکه خورشیدی
۸. جودانه
۹. زبانه
این یک نگاره با رنگ بندی فرابنفش از خورشید است. آنچه در این نگاره دیده میشود: زبانههای روشن پیرامون خورشید از ردهٔ C3 (ناحیهٔ سفید در بالا دست چپ)، آبتاز خورشیدی (سازههای موجی شکل در بالا دست راست) و چندین رگهٔ پلاسمایی که در ادامهٔ میدان مغناطیسی از سطح خورشید برخاستهاند.
پرونده:Incandescent Sun.ogv
این فیلم در اصل مجموعهای پویا از عکسهای گرفته شده از خورشید است که بر روی آنها کارهای نرمافزاری صورت گرفته تا ریزه کاری تصویر آشکار شود. این مجموعه نگارهٔ پویا مربوط به رفتار خورشید در یک بازهٔ ۲۴ ساعتهاست که در ۲۵ سپتامبر ۲۰۱۱ بدست آمدهاست.
خورشید ستارهای از گونهٔ کوتولهٔ زرد است که ۹۹٫۸۶٪ از مجموع جرم سامانهٔ خورشیدی را از آن خود کردهاست. هندسهٔ خورشید به یک کرهٔ کامل بسیار نزدیک است. پَخی بسیار کوچکی برابر با ۹×۱۰-۶ در هندسهٔ آن وجود دارد۳۴ در نتیجه میان قطر خورشید در دو سوی قطبها نسبت به قطر آن در مدار استوایی ۱۰ کیلومتر اختلاف وجود دارد. از آنجایی که خورشید جامد نیست و از پلاسما ساخته شدهاست، در مدار استوایی نسبت به دو قطب، تُندتر میگردد. این رفتار که گردش اختلافی نام دارد، به دلیل وجود پدیدهٔ همرفت در خورشید و جابجایی ماده در اثر اختلاف دما است. آنچنان که از قطب شمال دائرةالبروج دیده میشود، این جرم به بخشی از جرم خورشید تکانهٔ زاویهای پادساعتگرد میدهد درنتیجه در سراسر خورشید یک سرعت زاویه را توزیع میکند. دورهٔ این گردش واقعی نزدیک به ۲۵٫۶ روز در مدار استوایی و ۳۳٫۵ روز در دو قطب است. از آنجایی که جایگاه زمین نسبت به خورشید همیشه در حال دگرگونی است و همیشه یک نقطه از زمین بهترین دید را نسبت به خورشید ندارد، گویا گردش این ستاره در مدار استوایی اش نزدیک به ۲۸ روز است.۳۵ اثر جانب مرکز (گریز از مرکز) این گردش آرام، ۱۸ میلیون بار ضعیف تر از جاذبهٔ سطح خورشید در مدار استوایی آن است. اثر کشند سیارهها هم بسیار ضعیف است و نمیتواند تأثیر آشکاری بر شکل ظاهری خورشید بگذارد.۳۶
خورشید ستارهای با جمعیت (۱) است به عبارت دیگر ستارهای سرشار از عنصرهای سنگین است.۳۷ گمان آن میرود که آغاز پدیداری خورشید به موجهای شوک تابیده شده از یک یا چند ابرنواختر آن همسایگی باز گردد.۳۸ این تصور به دلیل انباشتگی عنصرهای سنگین مانند طلا و اورانیم در منظومهٔ خورشیدی نسبت به کمبود آنها در ستارههای با جمعیت نوع (۲) یا فقیر در عنصرهای سنگین، پدید آمدهاست. پذیرفتنی است اگر بگوییم این عنصرها در اثر انرژی بسیار بالای پدید آمده هنگام واکنشهای هستهای ابرنواختر یا هنگام جذب نوترون و تبدیل یک عنصر به عنصر دیگر درون یک ستارهٔ نسل دومی بزرگ بوجود آمدهاست.۳۷
خورشید مانند یک سیارهٔ خاکی دارای مرز روشنی نیست. تنها در لایههای بیرونی، چگالی گازها به صورت نمایی با افزایش فاصله از مرکز خورشید کاهش مییابد.۳۹ شعاع خورشید برابر است با فاصلهٔ مرکز خورشید تا لبهٔ شیدسپهر. این لایه، بیرونیترین لایهای است که پس از آن گازها یا بسیار سرد اند یا لایهای بسیار نازک را میسازند که نمیتوانند به اندازهٔ درخور توجه نور تولید کنند. در نتیجه لایهٔ آخر لایهای است که چشم غیرمسلح بتواند به خوبی آن را ببیند.۴۰
هسته
نوشتار اصلی: هستهٔ خورشیدی
از مرکز خورشید تا فاصلهای نزدیک به ۲۰ تا ۲۵ درصد شعاع خورشید به عنوان هستهٔ خورشید در نظر گرفته شدهاست.۴۱ و چگالی آن ۱۵۰g/cm۳ نزدیک به ۱۵۰ برابر چگالی آب، برآورد شدهاست.۴۲۴۳ و دمای آن هم نزدیک به ۱۵٫۷ میلیون کلوین بدست آمدهاست. در مقابل دمای سطح خورشید نزدیک به ۵٬۸۰۰ کلوین است. تازهترین پژوهشها نشان دادهاست که گردش هستهٔ خورشید به دور خودش از دیگر جاهای شعاعی آن تندتر است.۴۱ در بیشتر عمر خورشید، همجوشی هستهای از راه زنجیره گامهای p-p (پروتون-پروتون) و درنتیجه دگرگونی هیدروژن به هلیوم فراهم کنندهٔ انرژی خورشید بودهاست.۴۴ تنها ۰٫۸٪ از انرژی پدید آمده در خورشید وارد چرخهٔ سیاناو میشود.۴۵
همسنجی سیارههای منظومه خورشیدی با تعدادی از ستارههای مشهور:
الف:
زمین (۴) > ناهید (۳) > مریخ (۲) > تیر (۱)
ب:
مشتری (۸) > زحل (۷) > اورانوس(۶) > نپتون (۵) > زمین (بدون شماره)
پ:
شباهنگ (۱۱) > خورشید (۱۰) > ولف ۳۵۹ (۹) > مشتری (بدون شماره)
ت:
دبران (۱۴) > نگهبان شمال (۱۳) > رأس پیکر پسین (۱۲) > شباهنگ (بدون شماره)
ث:
ابطالجوزا (۱۷) >قلب عقرب (۱۶) > پای شکارچی (۱۵) > دبران (بدون شماره)
ج:
ویوای سگ بزرگ (۲۰) >ویوی قیفاووس (۱۹) > مو قیفاووس (۱۸) > ابطالجوزا (بدون شماره)
هسته تنها ناحیه در خورشید است که بخش بزرگی از انرژی گرمایی آن را از راه همجوشی هستهای فراهم میکند. به این ترتیب در ناحیهای درونی از مرکز تا ۲۴٪ شعاع، کارمایهٔ ۹۹٪ خورشید فراهم میشود و تا ۳۰٪ از شعاع، فرایند همجوشی هستهای به تمامی میایستد و دیگر ادامه نمییابد. دیگر جاهای ستاره از راه جابجایی انرژی از مرکز به لایههای بیرونی گرم میشود. کارمایهٔ پدید آمده در هسته پس از گذر از لایههای پی در پی وارد شیدسپهر میشود و از آنجا به صورت نور یا انرژی جنبشی ذرات به فضا میگریزد.۴۶۴۷
در هستهٔ خورشید در هر ثانیه، زنجیرهٔ پروتون-پروتون ۹٫۲×۱۰۳۷ بار روی میدهد. از آنجایی که در این فرایند چهار پروتون آزاد (هستهٔ هیدروژن) همزمان درگیر است پس در هر ثانیه ۳٫۷×۱۰۳۸ پروتون به ذرهٔ آلفا (هستهٔ هلیوم) دگرگون میشود به زبان دیگر ۶٫۲×۱۰۱۱ کیلو در ثانیه. در مجموع میتوان گفت در سراسر خورشید نزدیک به ۸٫۹×۱۰۵۶ پروتون آزاد دگرگون میشود.۴۷ میدانیم که در هر همجوشی و دگرگونی هیدروژن به هلیوم نزدیک به ۰٫۷٪ از حرم به انرژی دگرگون میشود.۴۸ پس خورشید در هر ثانیه ۴٫۲۶ میلیون تن جرم را در دگرگونی ماده-انرژی درگیر میکند. یا میتوان گفت ۳۸۴٫۶ یوتا وات۱ (۳٫۸۴۶×۱۰۲۶) یا ۹٫۱۹۲×۱۰۱۰ مگاتن TNT در هر ثانیه. این مقدار جرم از میان نمیرود بلکه بر پایهٔ همارزی جرم و انرژی به صورت انرژی تابشی در میآید.
مقطع عرضی یک ستاره مانند خورشید (ناسا)
توان تولید انرژی در هسته با کمک همجوشی، بسته به فاصله از مرکز خورشید تفاوت میکند. برپایهٔ شبیهسازیها چنین برآورد شده که توان در مرکز خورشید ۲۷۶٫۵ watts/m۳ است.۴۹ چگالی توان تولیدی خورشید بیشتر نزدیک به سوخت و ساز بدن یک خزندهاست تا یک بمب اتم. قلّهٔ توان تولیدی خورشید با انرژی گرمایی تولید شده در یک فرایند فعال کمپوست مقایسه میشود. انرژی بسیار بالای بیرون آمده از خورشید نه به این دلیل که خورشید در یکای حجم توان بسیار بالایی تولید میکند بلکه به این دلیل است که حجم بسیار بزرگی دارد.
نرخ فرایند همجوشی هسته که در هستهٔ خورشید رخ میدهد در تعادل بسیار ظریفی است که پیوسته خود را اصلاح میکند تا در تعادل بماند: اگر میزان همجوشی اندکی بیش از اندازهای باشد که اکنون است، آنگاه هسته به شدت گرم میشود، در برابر نیروی وزن لایههای بیرونی از هر سو گسترش مییابد، با این کار نرخ همجوشی کاهش مییابد و آشفتگی اصلاح میشود. اگر همجوشی اندکی کمتر از مقدار همیشگی آن باشد، هسته سرد و دچار جمع شدگی میشود، با این کار نرخ همجوشی افزایش مییابد و به تعادل باز میگردد.۵۰۵۱
پرتوهای گامای (فوتونهای بسیار پرانرژی) آزاد شده از واکنش همجوشی پس از چند میلیمتر پلاسمای خورشیدی جذب میشوند و دوباره با اندکی انرژی کمتر در جهتهای تصادفی تابیده میشوند؛ بنابراین برای یک فوتون زمان بسیار زیادی میکشد تا به سطح خورشید برسد. برآوردها نشان میدهد که برای یک فوتون ۱۰٬۰۰۰ تا ۱۷۰٬۰۰۰ سال طول میکشد تا در خورشید جابجا شود.۵۲ ما برای نوترینو تنها ۲٫۳ ثانیه زمان برده میشود تا به سطح خورشید برسد. نزدیک به ۲ درصد از انرژی کل تولیدی خورشید مربوط به این ذرهاست.
در پایان سفر از لایهٔ همرفتی بیرونی و رسیدن به سطح شفاف شیدسپهر، فوتونها به صورت نور دیدنی در فضا تابیده میشوند. پیش از گریز از سطح خورشید، هر یک پرتوی گاما در هستهٔ خورشید به چندین میلیون فوتون نور دیدنی دگرگون میشود. در اثر واکنشهای همجوشی در هسته ذرههای دیگری به نام نوترینو هم آزاد میشوند. این ذرهها برخلاف فوتونها کمتر با ماده وارد واکنش میشوند بنابراین تقریباً همهٔ آنها میتوانند بی درنگ از خورشید بگریزند. برای سالیان دراز شمار نوترینوهای آزاد شده از خورشید یا نوترینوهای شمرده شده با ابزارها یک-سوم شماری بود که نظریههای علمی پیشبینی میکرد. تا سال ۲۰۰۱ که دانشمندان دریافتند، دلیل این ناهماهنگی به ویژگی نوسان نوترینوها باز میگردد: حقیقت این بود که شمار نوترینوهای تابیده شده از خورشید با شمار پیشبینی شده از سوی نظریه با هم برابر بودهاند اما ابزارهای شمارش تنها ۱⁄۳ آنها را شمرده بودند و باقیمانده را از دست داده بودند و این به دلیل تغییر مزهٔ نوترینوها (به معنی: عدد کوانتومی ذرهٔ بنیادی) در هنگام تشخیص با ابزار بود.۵۳
ناحیهٔ تابشی
نوشتار اصلی: ناحیهٔ تابشی
در ناحیهٔ نزدیک به ۰٫۷ شعاع خورشید و یا پایینتر، مواد خورشیدی بسیار گرم و چگال اند آنقدر که بتوانند گرمای زیاد هسته را از راه تابش گرمایی به بیرون بتابانند.۵۴ در این ناحیه رفتار همرفتی دیده نمیشود. با اینکه دمای ماده از ۷ میلیون کلوین به ۲ میلیون کلوین میرسد اما همچنان این مقدار کمتر از مقدار پیش بینی شده برای کاهش دما نسبت به افزایش ارتفاع است. پس این کاهش دما نمیتواند از راه همرفت صورت گیرد.۴۳ در این بازه انرژی از راه تابش فوتون توسط یونهای هیدروژن و هلیم روی میدهد؛ که البته این فوتونها هم مسافت بسیار کوتاهی را پیش میروند و خیلی زود توسط یونهای دیگر دوباره جذب میشوند.۵۴ چگالی هم از ۰٫۲۵ چگالی خورشید تا بالای بازهٔ تابشی نزدیک به ۱۰۰ برابر افت میکند و از ۲۰ g/cm۳ به ۰٫۲ g/cm۳ میرسد.۵۴
میان ناحیهٔ تابشی درونی و گردش اختلافی بیرونی ناحیهٔ همرفتی یک لایهٔ گذار به نام Tachocline پدید میآید، این ناحیه در یک سوم بیرونی شعاع خورشید جای دارد. در این ناحیه میان ناحیهٔ تابشی با گردش یکنواخت و گردش اختلافی در ناحیهٔ همرفتی یک شکاف بزرگ (دگرگونی ناگهانی در رفتار) پدید میآید. شرایطی که در آن لایههای افقی پی در پی بر روی یکدیگر لیز میخورند.۵۵ جریان سیال در ناحیهٔ همرفتی در بالا، از بالا تا پایین لایه به آرامی کم میشود تا در پایینترین نقطه ناپدید شود. تا به این ترتیب با ویژگیهای آرام ناحیهٔ تابشی در پایین، هماهنگ شود. امروزه چنین گمان میشود که یک پویایی مغناطیسی در میانهٔ این لایه باعث پدید آمدن میدان مغناطیسی خورشید شدهاست.۴۳
ناحیهٔ همرفتی
در لایهٔ بیرونی خورشید، یعنی از سطح آن تا عمق نزدیک به ۲۰۰٬۰۰۰ کیلومتری (یا ۷۰٪ شعاع خورشید) پلاسمای خورشید به اندازهٔ کافی چگال یا داغ نیست تا بتواند انرژی گرمایی لایههای درونی را از راه تابش به بیرون برساند. به عبارت دیگر بجای ناحیهای تابنده، ناحیهای مات است. درنتیجه انرژی گرمایی از راه همرفت و ستونهای داغ جابجا میشود و به سطح خورشید میرسد. هنگامی که مواد در سطح خورشید کمی خنک میشود به عمق خورشید جایی که رفت و برگشتهای همرفتی آغاز شده بود، فروبرده میشود تا دوباره از بالای ناحیهٔ تابشی گرما دریافت کند. در لایهای از خورشید که با چشم میتوان آن را دید، دما تا ۵٬۷۰۰ کلوین افت میکند و چگالی تنها 0.2 g/m۳ است (نزدیک به ۱/۶۰۰۰۰ چگالی هوا در سطح دریاها).۴۳
ستونهای داغ همرفتی بر روی سطح خورشید جا میاندازند این ستونها از دور به صورت جودانه یا یک سری نقطه دیده میشود. آشفتگی پدید آمده در اثر رفت و برگشتهای همرفتی در بیرونیترین لایهٔ بخش درونی خورشید، باعث ایجاد یک پویایی در «اندازهٔ کوچک» میشود که درنتیجهٔ آن یک شمال و جنوب مغناطیسی در سراسر سطح خورشید پدید میآید.۴۳ ستونهای داغ خورشید به شکل سلولهای بنارد است درنتیجه هندسهٔ منشوری شش ضلعی به خود میگیرد.۵۶
شیدسپهر
دمای مؤثر یا جسم سیاه خورشید (۵۷۷۷ کلوین) دمایی است که یک جسم سیاه هم اندازهٔ خورشید باید داشته باشد تا به اندازهٔ خورشید توان تولید داشته باشد.
نوشتار اصلی: شیدسپهر
سطح دیدنی خورشید یا شیدسپهر، لایهای است که در زیر آن خورشید در برابر نور دیدنی، کدر میشود.۵۷ بالای شیدسپهر، نور سفید خورشید است که آزادانه در فضا تابیده میشود و همهٔ انرژی اش را از خورشید بیرون میبرد. تغییر اندازهٔ کدری خورشید به کاهش مقدار یونهای H− بستگی دارد چون این یون است که نور مرئی را به آسانی جذب میکند.۵۷ در مقابل نوری که ما میبینیم در اثر واکنش الکترونها با اتم هیدروژن برای تولید یون H− تولید شدهاست.۵۸۵۹ شیدسپهر دهها تا صدها کیلومتر ضخامت دارد و گاهی کدری آن اندکی از هوای زمین هم کمتر میشود. چون بخش بالایی شیدسپهر از بخشهای پایینی خنک تر است، در یک تصویر خورشید میبینیم که مرکز خورشید روشنتر از لبههای آن است. به این پدیده تیرگی مرکز-لبه میگویند.۵۷ نور سفید خورشید یک ناحیهٔ طیفی مربوط به جسم سیاه دارد که نشان میدهد دمای آن نزدیک به ۶۰۰۰ کلوین است و البته همراه با آن خطهای جذبی اتمی پراکنده دارد که به لایههای نازک روی شیدسپهر مربوط است. چگالی ذرهها در شیدسپهر نزدیک به ۱۰۲۳ m−۳ است. این مقدار ۰٫۳۷٪ شمار ذرهها در یکای حجم جو زمین در تراز دریاها است. ذرههای شیدسپهر را الکترونها و پروتونها تشکیل میدهد که میانگین ذرههای هوا ۵۸ برابر از آن سنگین تر است.۵۴
در آغاز طیفسنجی شیدسپهر، خطهای جذبی پیدا شده بود که با هیچیک از عنصرهای شیمیایی شناخته شده همخوانی نداشت. در ۱۸۶۸ نورمن لاکیر حدس زد که این خطهای جذبی مربوط به یک عنصر تازهاست. او این عنصر تازه را هلیم نامید، این نام، یادآور خورشیدخدای یونان، هلیوس بود. پس از ۲۵ سال، دانشمندان برای نخستین بار توانستند هلیم را در زمین درون ظرفی جمعآوری کنند و از دیگر عنصرها جدا کنند.۶۰
جو خورشیدی
همچنین ببینید: تاج خورشیدی و حلقهٔ تاج خورشیدی
از تمام خورشید فقط جو آن قابل مشاهدهاست ناحیهای که از لحاظ فعالیت نیز غنی است پایه جو خورشیدی شید سپهر است لکههای خورشیدی بر روی شید سپهر ظاهر میشوند لایه خارجی بعدی رنگین سپهر است تاج آخرین لایه جوی خورشید میباشد.
شید سپهر یک لایه نازک گاز که بیشترین عمقی که میتوانیم آن را مشاهده کنیم و تابش قابل رویت از آن منتشر میشود وبر این سطح دانههای گذرا با عمر متوسط ۵ تا دهها دقیقه را مشاهده میکنیم شکل گیریهای روشن نا منظم که بوسیله رگههای تاریک احاطه شدهاند این دانه دار شدن خورشیدی لایه بالایی ناحیه جا به جایی خورشید است لایه گازی به ضخامت حدود ۰/۲r زمینی که درست زیر پایه شید سپهر قرار میگیرد در این منطقه انرژی گرمایی توسط جا به جایی منتقل میشود تودههای گرم
لکههای سطح خورشید در نقشه ساموئل دان (۱۷۹۴)
گاز (سلولهای جا به جایی) بالا میروند و به صورت دانههای روشن ظاهر میشوند و انرژیشان را در شید سپهر تخلیه میکنند گازهای سرد تر پایین میآیند. طیف پیوستار سرار قرص خورشیدی یک دمای مؤثر _استفان بولتزمن_ 5800k را برای شید سپهر تعریف میکند از میان شید سپهر به سمت بیرون دما به شدت پایین میآید و سپس مجدداً در حوالی ۵۰۰km داخل رنگین سپهر شروع به بالا رفتن میکند تا این که به دماهای بسیاربالا درتاج میرسد. شید سپهریک طیف یوسته جسم سیاه گسیل میدارد لذا بایستی در طول موجهای مرئی کدر باشد اماچگالیها در اینجا بسیار کمتر از مقداری است که گاز برای کدر بودن و تولید تابش پیوسته جسم سیاه لازم دارد.۶۱
میدان مغناطیسی
صفحهٔ جریان نورکره در بیرون خورشید هم گسترش یافته و بر سامانهٔ خورشیدی اثر میگذارد. این پدیده، نتیجهٔ تأثیر میدان مغناطیسی درحال گردش خورشید بر روی پلاسما در محیط میانسیارهای است.۶۲
همچنین ببینید: میدان مغناطیسی ستارهای
خورشید ستارهای فعال از دیدگاه مغناطیسی است. یک میدان مغناطیسی توانا دارد که سال به سال اندکی سویش تغییر میکند تا اینکه هر یازده سال وارون میشود.۶۳ میدان مغناطیسی خورشید دارای اثرهای بسیاری است که به مجموعهٔ آنها فعالیت خورشیدی گفته میشود. از جملهٔ آنها، لکههای خورشیدی بر سطح آن، شرارهٔ خورشیدی و دگرگونیها در بادهای خورشیدی است که باعث جابجایی ماده درون سامانهٔ خورشید است.۶۴ فعالیتهای خورشید بر زمین هم اثر میگذارد. برای نمونه میتوان به شفق قطبی که در ناحیههای نزدیک به قطب دیده میشود و یا دیدن شکست یا خرابی در موجهای رادیویی و توان الکتریکی اشاره کرد. گمان آن میرود که میدان مغناطیسی خورشید نقش مهمی در ساخت و کامل شدن سامانهٔ خورشیدی داشته باشد. همچنین این فعالیتهای خورشیدی، ساختار بخش بیرونی هواکرهٔ زمین را هم تغییر میدهد.۶۵
به دلیل دمای بسیار بالای خورشید، تمام مادهٔ موجود در آن در حالت گازی و پلاسما است. این ویژگی به خورشید این توان را میدهد تا در مدار استوایی اش تندتر (نزدیک ۲۵ روز) از عرضهای جغرافیایی بالاتر (نزدیک به ۳۵ روز در ناحیهٔ قطبی) بگرد خود بچرخد.۶۶۶۷ گردش اختلافی خورشید در عرضهای جغرافیایی گوناگون آن باعث میشود تا با گذر زمان خطهای میدان مغناطیسی خورشید در هم پیچیده شود، حلقههای میدان مغناطیسی در سطح خورشید فوران کند و درنتیجه لکه و زبانهٔ خورشیدی پدید آید. در اثر همین پیچش است که پویایی خورشیدی و چرخهٔ یازده سالهٔ وارونه شدن میدان مغناطیسی خورشید پدیدار میشود.۶۶۶۷
میدان مغناطیسی خورشید بسیار فراتر از خود خورشید را هم دربر میگیرد. بادهای خورشیدی مغناطیسی پلاسمایی، میدان مغناطیسی خورشید را به بیرون از خورشید میبرد، پدیدهای که امروزه به آن میدان مغناطیسی میانسیارهای گفته میشود.۶۸ پلاسما تنها میتواند در راستای خطهای میدان مغناطیسی جابجا شود برای همین میدان مغناطیسی میانسیارهای به صورت شعاعی گسترش یافتهاست. چون میدان مغناطیسی بالا و پایین مدار استوایی خورشید قطبشهای متفاوت از یا به سوی خورشید دارند، یک لایهٔ نازک جریان در صفحهٔ استوایی خورشید پدید میآید که به آن صفحهٔ جریان نورکره گفته میشود.۶۸ در فاصلههای دور، چرخش خورشید باعث پیچیده شدن میدان مغناطیسی و صفحهٔ جریان به شکل حلزونی ارشمیدس میشود؛ مانند سازهٔ مارپیچ پارکر.۶۸ میدان مغناطیسی میانسیارهای بسیار قوی تر از اجزای میدان مغناطیسی دوقطبی خورشید است. میدان مغناطیسی دوقطبی ۵۰ تا ۴۰۰ میکروتسلایی خورشید (در شیدسپهر) با توان سهٔ فاصله کاهش مییابد و در نزدیکیهای زمین به ۰٫۱ نانوتسلا میرسد. اما دادههای بدست آمده توسط فضاپیماها نشان میدهد میدان مغناطیسی میانسیارهای در نزدیکی زمین ۱۰۰ برابر قوی تر است.۶۹
ساختار شیمیایی
خورشید در درجهٔ نخست از عنصرهای هیدروژن و هلیم ساخته شدهاست. این عنصرها به ترتیب ۷۴٫۹٪ و ۲۳٫۸٪ از جرم خورشید را در شیدسپهر میسازند.۷۰ در ستارهشناسی به همهٔ عنصرهای سنگین تر فلز میگوییم، فلزها سازندهٔ کمتر از ۲٪ جرم خورشید اند. فراوانترین این فلزها عبارتند از: اکسیژن (نزدیک به ۱٪ جرم خورشید)، کربن (۰٫۳٪)، نئون (۰٫۲٪) و آهن (۰٫۲٪)۷۱.
خورشید ترکیب شیمیایی اش را از محیط میان ستارهای به ارث بردهاست؛ و خود هلیم و هیدروژن هم به جای مانده از هستهزایی مهبانگ اند. فلزها از هستهزایی ستارهای پدید آمدهاند. ستارههایی که دورهٔ تکامل خود را به پایان رساندهاند و مواد خود را به محیط میان ستارهای پیش از ساخت خورشید بازگرداندهاند.۷۲ ساختار شیمیایی شیدسپهر نمایانگر ساختار اساسی سامانهٔ خورشیدی است.۷۳ البته از هنگامی که خورشید ساخته شده، بخشی از هلیم و عنصرهای سنگین از شیدسپهر گریختهاند برای همین هم اکنون شیدسپهر دارای هلیم کمتری نسبت به گذشته دارد و عنصرهای سنگین هم نسبت به پیشستارهٔ خورشید ۸۴٪ اندازهٔ گذشته را دارند. ۷۱٪ پیشستارهٔ خورشید از هیدروژن، ۲۷٫۴٪ از هلیم و ۱٫۵٪ از فلزها ساخته شده بود.۷۰
در بخشهای درونی خورشید به دلیل همجوشی هستهای، هیدروژنها به هلیم دگرگون میشوند. برای همین میتوان گفت درونیترین بخش خورشید نزدیک به ۶۰٪ هلیم دارد ولی درصد فلزها ثابت است. از آنجایی که بخش درونی خورشید تنها پرتوزایی میکند و همرفتی ندارد (نگاه کنید به بخش ناحیهٔ تابشی در بالا) برای همین هیچیک از میوههای همجوشی در هسته به سوی بالا و شیدسپهر نمیآید.۷۴
فراوانی عنصرهای سنگین خورشیدی که در بالا توضیح داده شد را با کمک طیفسنجی نجومی شیدسپهر خورشید و اندازهگیری فراوانیها در شهابسنگهایی که هرگز آن قدر داغ نشدهاند که به دمای ذوب برسند، بدست میآوریم. گمان آن میرود که این شهابسنگها ساختار پیشستارهٔ خورشید را نگه داشته باشند و عنصرهای سنگین بر آنها اثر نگذاشته باشند. نتیجهٔ هر دوی این روشها با هم همخوانی دارد.۱۳
گروه آهن
در دههٔ ۱۹۷۰ پژوهشها بر روی وجود عنصرهای گروه آهن در خورشید متمرکز بود.۷۵۷۶ با اینکه پژوهشهای گستردهای صورت گرفت اما فراوانی برخی از عنصرهای گروه آهن مانند کبالت و منگنز چندان روشن نشد دست کم تا سال ۱۹۷۸ چنین بود؛ و این به دلیل ساختار بسیار ریز این عنصرها بود (منظور تفاوت ناچیز در ترازهای انرژی است).۷۵
نخستین فهرست کامل از توان نوسان عنصرهای یونی شدهٔ گروه آهن در دههٔ ۱۹۶۰ میلادی بدست آمد و تا سال ۱۹۷۶ محاسبات آن کامل شد.۷۷
چرخههای خورشید
